

Abstracts

Solid-State Plasma Controlled Nonreciprocal Microwave Device (Correspondence)

*H.J. Kuno and W.D. Hershberger. "Solid-State Plasma Controlled Nonreciprocal Microwave Device (Correspondence)." 1967 *Transactions on Microwave Theory and Techniques* 15.1 (Jan. 1967 [T-MTT]): 57-58.*

Various types of nonreciprocal microwave devices have been developed through the use of the tensor permeability of magnetic materials such as ferrites. In a solid-state plasma such as a semiconductor, the conductivity becomes a tensor quantity under a dc magnetic field. Toda developed an isolator using a solid-state plasma under a transverse magnetic field and obtained the isolation ratio of about 10 dB. Recently, we have reported the result of the experimental observation of the microwave Faraday effect in a solid state plasma waveguide under a longitudinal magnetic field. It was found that a large amount of rotation of the plane of polarization with very small attenuation of power can be obtained in a solid-state plasma under a relatively high magnetic field. In this paper, an experimental nonreciprocal microwave device which makes use of the Faraday rotation in a solid-state plasma is presented.

[Return to main document.](#)